
Bifactorizable wavefunctions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1991 J. Phys. A: Math. Gen. 24 425

(http://iopscience.iop.org/0305-4470/24/2/016)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 13:52

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/24/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 24 (1991) 425-431. Printed i n  the UK 

Bifactorizable wavefunctions 

A Mannt,  M Revzent, F C Khannaz and Y Takahashif, 
I "cparurlr;nl 0, mya,ca ,  Technion-irfdri inaiiiuie o i  Technoiogy, iiaiia 32000, :me: * r. ~~. .. nL~~-..- 
i Theoretical Physics Institute, Department of Physics, University of Alberta, Edmonton, 
Albena,T6G 211. Canada andTRIUMF, Wesbrook Mall, Vancouver, BC V6T2A3,Canada 
P Theoretical Physics Institute, Department of Physics, University of Alberia, Edmonton, 
Alberta, T6G 211, Canada 

Received 10 May 1990 

Abstract. Physical motivation is given for studying prapenies of bifactorizable ( B F )  func- 
tions, i.e. functions of two variables which can be factored in two different ways. The 
functional equation which a BF function must satisfy is derived and the form ofits wlution 
is shown to be a Gaussian. This also yields the functional equation defining a Gaussian, 
in analogy to the equation E ( x +  y )  = E ( x ) E ( y )  defining the exponential function. Furiher, 

centre of mass is found to be i n  a pure state, then both systems were prepared in pure 
states, each of which is a Gaussian in the coordinate representation, and so are the centre 
of mass and relative coordinate states. 

foliowing i j  proved: if two syjiems are prepare: in&pen&ni;y, an: ;heir 

1. Introduction 

Consider a classical system which is made up of two independent subsystems. The 
coordinate of the subsystems are labelled by xi = (Q;, Pj) ,  i = 1, 2. The system can be 
described by a product (factorized form) of the respective distribution functionsf;(x;): 

f ( x , ,  x2) = f i ( X l ) m 2 ) .  

Now suppose that the system may also be described in a factorized form in terms of 
other variables, x i ,  x;, which are related to x , ,  x2 by a linear transformation, i.e. we 
also have 

f (Xl ,  x2) =f3(xl)f4(x;). 

We say that f ( x , ,  xz) possesses the bifactorization property. An example for such a 
case could be when we can also factorize the distribution function of our system (i.e. 
f (x, , x2)) in terms of the centre of mass and relative coordinates. Suppose that in its 
factorized form one of the above distribution functions, sayl,(x;), where xj corresponds 
to the centre of mass variables, describes a classically 'pure state', i.e. 

which states that the position of the centre of mass Q is Qo, whiie the momentum of 
the centre of mass P is Po. Now if  the total system bifactorizes, then it  obviously 
follows that all other distribution functions are also 'pure classical states'. x, and x2 
being independent variables of product functions, fixing of their sum by a 8-function 
implies that each is fixed by a &-function. 
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A closely related quantal problem was discussed more than 20 years ago by 
Aharonov et al [l], and more recently by Emch and Hegerfeldt [2]. Aharonov et al 
[ 1 ] show that the quantum radiation field possesses ‘classical characteristics’ only if 
it is in Glauber’s coherent state [31. By classical characteristics they [ I ]  mean the 
attribute of ‘indistinguishability of the radiation in two separate channels, whether it 
has been produced by independent sources or by a single source whose output is 
divided between the channels’. We will discuss this result in section 3. Th&e it will 
be shown that this is a special case of bifactorizability. Thus, the single channels 
(‘source’) case involves, in fact, a tacit, factorized term which describes the vacuum 
of the other transformed coordinate. We also discuss in section 3 the results of Emch 
and Hegerfeldt [2] who show ‘that if two quantum systems are prepared independently, 
and if their centre of mass is found to be in a coherent state, then each of the component 
systems is also in a coherent state’. This again is a special case of our considerations. 
In fact, we prove the following: if two quantum systems are prepared independently, 
and if their centre of mass is found to be in a pure state, then each of the component 
systems is also in a pure state, which in the coordinate representation is a Gaussian 
wavefunction. 

In section 2 we define our problem and present our main mathematical results: 
basically we study bifactorizable (BF) quantum wavefunctions, i.e. cases when the 
wavefunction of a composite system can be written in two alternative ways (from now 
on, x will denote coordinates only): 

W X , ,  x2) = * I ( X I W 2 ( X 2 )  ( 1 )  

W X I ,  x2) = V3(xw4(x ; )  (2) 

x i  = x, cos B+x2 sin 9 

x:= -x, sin e +  x2 cos 8 

and also as 

with 

( 3 )  

for some given angle 0. We shall show that this property of bifactorization leads to 
factorizability for any rotation (arbitrary 8 in equation (3)) if it is BF for a particular 
0. It then follows that each of the V( (x j )  must be of Gaussian form which is closely 
related to the so-called coherent state when pure states are studied. A more general 
relation between xi and XI is also considered, as well as bifactorizability for operator- 
valued functions and for quantum density matrices. The problem of characterizing the 
normal distribution has a long and distinguished history going back to Maxwell and 
Hershel [4]. The proof presented here which is a generalization of the AFPL [ I ]  approach 
leads to a novel functional characterization of the Gaussian function (equation (11)). 

2. Alternative factorizations-basic results 

In this section we derive properties of BF functions and B F  functions of operators. The 
validity of our proofs is claimed for physically acceptable functions that are assumed 
to have the property of normalizability and differentiability. 

( a )  Functions V,, Y2, V,, Y4, which satisfy the functional equation (the BF 

condition): 

Y,(xdV2(x2) = V , ( x w & ; )  =V,(/LxI+ vx2)~4 ( -~X ,+ /Lxd  (4) 
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with, for some 8 # 0, nr/2  

p =cos 8 U = sin 8 (5) 

'Pl(xl)'P2(x2) -exp(-Ax'+b. x) (6a)  

' P , ( x : ) ' P , ( x : ) - e x p ( - A ~ ' ~ + b ' . ~ ' ) .  (6b) 

x = ( X I ,  X J  x'=(X:,X:) (7) 

are Gaussian, and each side of equation (4) is of the form 

Here x, x' are two-dimensional vectors, 

A is a complex number with Re A 3 0  (for normalizability) and b is some complex 
two-dimensional vector: 

b;  = b, cos 8+b,sin 8 

b; = -;, sin a + b2 cos a. 
This can be seen as follows. We note that the BF condition (equation (4)) implies that 
'P<(x) cannot vanish anywhere (except at 1x1 -f m) because if 'Pg(x,,) = 0 ( i  = 1 or i = 2) 
for some x, then 'P, and/or 'P4 must vanish identically. We thus normalize 

'P((0) = 1 i = 1,2,3,4.  (8) 

*Ax21 = 'P3(VX2)'P4(W2). (9a)  

'P,(x,) = 'P , ( f iX , j 'Pk~X, ) .  (9b) 

Now ior xI = 0, from equation (4) using equation ( S )  it foiiows thai 

Similar reasoning with x2 = 0 yields 

By substituting equation (9) in equation (4): renaming the variables .px! + x. ux2 + y 
and calling y = cot 8 = p /  U, we obtain 

This functional equation can be analysed by expanding both sides in a Taylor series 
about the origin and, upon equating the coefficients of equal powers of x and y one 
is led to the result given in equation (6). Rather than pursuing the above 'brute force' 
path we demonstrate this result (equation (6)) by the following argument. From the 
left-hand side of equation (IO), it is clear that F ( x ,  y )  is symmetric with respect to the 
interchange x-y .  Hence it is of the general form of F [ ( x + y ) ,  x y ] .  However, the term 
involving y (mid-term of equation (10)) implies that F ( x , y )  cannot depend on x + y ,  
i.e. we have 

where the subscript 4 was dropped for simplicity. We now consider this identity near 
the point (x; y = 0) and choose Sy = Sx. Using equation (8) (and hence also f (0)  = 1 
(cf equation ( I  I ) )  and denoting differentiation by a prime we get to first order in ax: 

f (XSX) = l+Xf'(O)SX 

'P(x + Sx) = Y (x)  + 'P'(xjSx 

'P(Sx) = 1 +'P'(O)SX. 
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Upon substituting in equation (11) we get W‘(x)/W(x) = W ( O ) + x f ‘ ( O ) ;  hence 

W(x)  -exp(ff’(o)x’+W‘(o)x) (12) 
which is indeed Gaussian. The same holds for all the functions W, ( i  = l-4), and the 
same A (i.e. $(O) of equation (12)) is common to all the functions Wr.  I t  should be 
noted that the general functional equation defining a Gaussian is that given by equation 
(11). This is a generalization of the functional equation defining the exponential 
function: E(x)E(y)=  E ( x + y ) ,  implying E(x)=exp(ax) .  

For general complex A, each W, represents a squeezed state. If  we require that the 
first-order quantum correlation [ 5 ]  vanishes, i.e. 

f ( P q + q P ) - ( P X q ) = O  

then it follows that Im A = 0 [ 5 ] .  In this case the function 

W ( x )  - exp(-Ax2+ h x )  

( A  real) is an eigenfunction of the boson annihilation operator 

It then follows that Y ( x )  is a Glauber coherent state for the operator a. 

mation, i.e. if 
(b) The Gaussian property of BF functions also holds for a general linear transfor- 

~ , ( x , ) W ? ( x J  = vdX;)Y4(x;) ‘ (13)  

where 

.. xj = T; ;.xi + T ; ; X ;  

x: = TzIxI + TZ2x2 

(with TI, TI2Tz1 Tz2 (Ti,  T22- T12Tz,) # 0) then each Wj is a Gaussian (because by a 
rescaling of all the variables, equation (14) will assume a form similar to the one given 
by equation (3)). 

( c )  Consider a BF function of boson creation and annihilation operators, 

fdatB)fc(a3 =fA(a3fD(ab)  (15) 

with the different f; ( i  = A, B, C, D) characterizing different fields. However, the fields 
are related by 

I&(’+ 1 Y 12 = 1 (17) 

i.e. here the operators are connected via an SU(2) transformation. Here again we use 
the normalization 

J ( O ) = i .  (is)  

This case may be analysed with complex quantities zi instead of the real quantities 
x and y (e.g. by taking the matrix element of equation (15) between the ground state 
and the coherent state (zFI; see [ I ] ) .  Then the functional form will again emerge to 
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be Gaussian except for phase factors that are related IO the transformations defined 
by equations (6) and (7). The SU(2) transformation is defined by the complex quantities 
p and v. Two separate phases may be given by 

- _- P* e2;q” - - e 2 k ”  Y* 
and - 

F Y 

then the four functions may be given as 

f A ( z )  - exp(fG’(0) ezi‘v-+*Jz2) 

fB(z)-exp(fG’(0) e2+Z,z2) 
fc(z)-exp(fG’(0) e2!O-z2) 

f d z )  - exp($’(o)zZ) 
with 

Here we have left out the term linear in z in the exponent to emphasize the Gaussian 
nature of the individual functions. The universality of the Gaussian functional form 
is true except for a phase factor that is important in the context of the SU(2) 
transformation. We note that the action off;(a:) on the vacuum generates a squeezed 
state, unless G’(0) = 0 in which case it reduces to a coherent state. 

Finally, we note that the Gaussian property of the BF wavefunctions is carried over 
into BF density matrices: suppose that a density matrix of a two-particle system is BF, 
i.e. 

(20) 

(Here again the primed coordinates are related to the unprimed, for each particle, by 
an O(2)  transformation, equation (3).)  Then it follows that 

(Y,Y*lPlX,XJ = (Y,IP,lX,)(Y2lP>lX,) = (Y;IPllxl)(Y;lP,lx;). 

(y i lp i lx , )=exp( -ax j -by j+cxjy;+d,x;  +ejyj) i = 1 , 2  (21) 
with a similar equation for the primed variables. The constants a, 6 and c are common 
to all four density matrices. (The case of c = 0 in the above equation corresponds to 
a pure-state density matrix.) To prove this assertion we merely note that holding fixed 
one set of coordinates (e.g. the y-coordinates), we are back to the case of ordinary 
functions satisfying the BF condition, and therefore each pi must be Gaussian in its xi 
with coefficients which depend on y ; .  Since the same argument holds when we fix the 
x-coordinates, it follows that the only terms which may be added to the bilinear form 
in the exponent in equation (21) are of the form x;yi, x:y: ,  x i y ; .  However, it is easily 
verified that the inclusion of such terms will violate equation (20), unless their 
coefficients vanish. 

3. Factorizations of specisl interest 

In this section we study two bifactorizations which are of special interest. The first 
involves two independent particles whose wavefunction is a product of functions of 
the individual coordinates and, further, the wavefunction is also a product when 
expressed in the centre of mass and relative coordinates, i.e. 

w;(x,)wXxJ = w w , x ,  +p2x*)Wx2 - X I ) .  (22) 
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Here pi = m i / ( m , + m 2 ) ,  with m, the mass of the ith particle, and x, its coordinate. It 
is easy to see that by a rescaling of the variables, equation (22) can be brought to the 
form 

where 

x ;=x;cosB+x;s in8  

x ~ = - x ~ s i n @ + x ~ c o s e  

x: = a x r  i = l , 2  

c o s 8 = G  s i n B = &  

and 

It then follows that the general form of Y, (in the rescaled variables) is of the form 
of equation (6). Some of the results of [Z] can be considered as a special case of the 
above considerations. Indeed, let there be given a density matrix of two independent 
particles. Then it may be written as a product of the density matrices of the individual 
particles. If one assumes that the centre of mass of the system is in a pure state, then 
a theorem by Von Neumann [6] assures us that the two-particle density matrix factorizes 
into a product of a pure-state density matrix in the centre of mass and a density matrix 
for the reiative coordinate. Hence, we have bifactorizabiiity of the density matrix, and 
this, together with the information that one of the density matrices involved (the C M )  

is in a pure state, implies that all the density matrices involved are pure-state density 
matrices and, moreover, are of the general Gaussian form; under the added constraint 
that the wavefunction of the centre of mass is a coherent state, then A is fixed to be 
real and we get that all Ti are now coherent states, which is the result obtained by 

The second bifactorization of interest is the one implicit in [l]. Comparing their 
treatment with ours (see equation (15)), it is clear that the D mode is not excited in 
their case, i.e. they chose fD- 1 .  Therefore G =  1, implying G'(O)=O, and hencef,, 
fB and fc, in equation (19), reduce simply to exponential functions whose exponent 
is linear in z (see remark below equation (19)), thusf ; (a t )a  exp(a,a:), i.e. coherent 
states. Alternately, if written in the 'coordinate' representation, AFPL treatment is 
equivalent to assuming, in our equation (121, that one of the functions is e-*x2 with 
A > 0 and "'(0) = 0 (this is what is meant here by one channel empty). As our treatment 
showed that A is common to all functions we have that all the Yi involved are coherent 
states. 

Em& and ~egerfeidi  [2j  in a diSereni way, 

4. Conclusions 

Bifactorizable wavefunctions were defined as functions of two variables which can be 
factorized in two independent ways. These functions were shown to satisfy a functional 
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equation which is a generalization of the functional equation for the exponential 
function. The general form of these functions was shown to be Gaussian and for 
rotations the functions could then be factorized in infinite ways. We related the results 
to known [ l ,  21 theorems on the properties of coherent states and, in part, generalized 
them. 
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